Grass Biomethane
European Grassland Federation Conference Kiel, Germany
30 August 2010

Dr Jerry Murphy, Dr N Korres, Dr A Singh
Environmental Research Institute,
University College Cork
12th August 2010
Renewable Targets 2020

- RES 16% – EU Target
- RES-E 40% – Irish Target
 - Equates to 7% RES
- RES-H 12% – Irish Target
- RES-T 10% – EU & Irish Target
Focus of Research

Figure 2: Energy use in Ireland by mode of application 2008

- Heating 41%
- Electricity 17%
- Transport 42%

An argument for using biomethane generated from grass as a biofuel in Ireland

Jerry D. Murphya,*, Niamh M. Powerc

aDepartment of Civil and Environmental Engineering, University College Cork, Cork, Ireland
bEnvironmental Research Institute, University College Cork, Cork, Ireland
cDepartment of Civil, Structural and Environmental Engineering, Cork Institute of Technology, Cork, Ireland
Table 7 - Biofuels, and associated land area required, to substitute for fuel used by a typical Dublin bus (28,000 l of diesel/a, 1008 GJ/a).

<table>
<thead>
<tr>
<th>Crop</th>
<th>Fuel/t</th>
<th>Fuel/ha/a</th>
<th>Gross Energy GJ/ha/a</th>
<th>Land required ha/a</th>
<th>Rotation</th>
<th>Land to be contracted Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiesel (rapeseed)</td>
<td>4</td>
<td>0.3 t</td>
<td>1.2 t oil</td>
<td>42</td>
<td>24</td>
<td>1 in 5</td>
</tr>
<tr>
<td>Ethanol (sugar beet)</td>
<td>50</td>
<td>100 l/t</td>
<td>5000 l/ha</td>
<td>105</td>
<td>9.6</td>
<td>1 in 3</td>
</tr>
<tr>
<td>Ethanol (wheat)</td>
<td>8.4</td>
<td>375 l/t</td>
<td>3150 l/ha</td>
<td>66</td>
<td>15.3</td>
<td>2 in 3</td>
</tr>
<tr>
<td>Biogas (sugar beet)</td>
<td>50</td>
<td>128 m³/t</td>
<td>6400 m³</td>
<td>134</td>
<td>7.5</td>
<td>1 in 3</td>
</tr>
<tr>
<td>Biogas (wheat)</td>
<td>8.4</td>
<td>420 m³/t</td>
<td>3528 m³</td>
<td>74</td>
<td>13.7</td>
<td>2 in 3</td>
</tr>
<tr>
<td>Biogas from silage</td>
<td>60</td>
<td>123 m³/t</td>
<td>7380 m³</td>
<td>155</td>
<td>6.5</td>
<td>3 in 3</td>
</tr>
</tbody>
</table>
What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?

Beatrice M. Smytha,b, Jerry D. Murphya,b,*, Catherine M. O’Briena,b

aDepartment of Civil and Environmental Engineering, University College Cork, Cork, Ireland
bEnvironmental Research Institute, University College Cork, Cork, Ireland
Relative Energy Balance of Grass Biomethane

Gross and net energy comparison of various crop systems
Sustainable Biofuels

- Article 17 (2):
 - From Jan 1 2018 the greenhouse gas emissions of biofuels from new facilities are reduced by 60% compared to the alternative fossil fuel use;
- Article 17 (3):
 - No damage is done to sensitive or important ecosystems.
- Article 17 (4)
 - May not convert wetland, forestry or grassland to energy crop production
- Article 21 (2)
 - Biofuels from wastes, residues, non-food cellulosic material, and ligno-cellulosic material shall be considered to be twice that made by other biofuels
Annex 5 of Renewable Directive

<table>
<thead>
<tr>
<th>Biofuel</th>
<th>Typical GHG savings</th>
<th>Default GHG savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat ethanol</td>
<td>32%</td>
<td>16%</td>
</tr>
<tr>
<td>Rape seed biodiesel</td>
<td>45%</td>
<td>38%</td>
</tr>
<tr>
<td>Sugar beet ethanol</td>
<td>61%</td>
<td>52%</td>
</tr>
<tr>
<td>Corn ethanol</td>
<td>56%</td>
<td>49%</td>
</tr>
<tr>
<td>Sugar cane ethanol</td>
<td>71%</td>
<td>71%</td>
</tr>
<tr>
<td>Waste oil biodiesel</td>
<td>88%</td>
<td>83%</td>
</tr>
<tr>
<td>OFMSW biomethane</td>
<td>80%</td>
<td>73%</td>
</tr>
<tr>
<td>Slurry biomethane</td>
<td>84%</td>
<td>81%</td>
</tr>
</tbody>
</table>
Sustainability of grass biomethane

Modeling and Analysis

Is grass biomethane a sustainable transport biofuel?

Nicholas E. Korres, Anoop Singh, Abdul-Sattar Nizami and Jerry D. Murphy, * Biofuels Research Group, Environment Research Institute, University College Cork, Ireland
Sustainability of grass biomethane

<table>
<thead>
<tr>
<th>Scenario</th>
<th>% CO2 savings</th>
<th>Net energy (GJ/ha/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case scenario</td>
<td>21.5</td>
<td>64.4</td>
</tr>
<tr>
<td>Wind energy for electricity</td>
<td>42</td>
<td>64.4</td>
</tr>
<tr>
<td>Wood chips for heat demand</td>
<td>62</td>
<td>63.8</td>
</tr>
<tr>
<td>Vehicle efficiency</td>
<td></td>
<td>68.9</td>
</tr>
<tr>
<td>0.6 t/ha/a C sequestration</td>
<td></td>
<td>66.7</td>
</tr>
<tr>
<td>2.2 t/ha/a C sequestration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8 t/ha/a C sequestration</td>
<td></td>
<td>260</td>
</tr>
</tbody>
</table>
Energy from rubbish
Brecht II, 50,000 t/a of OFMSW to gas
Munich Waste Treatment: Dry batch digesters
Linkoping Sweden
Feed stock for Linkoping

- 7,000t/a of pig slurry
- 47,000t/a of slaughter waste

Blood and process water pumped in
Biogas treatment

Collection over digester

Scrubbing

Compression and storage
65 buses, 10 waste collection lorries, 600 cars...
And a train
Brook an der Leitha: 60,000 t/a of out of date food with grid injection of biomethane
Biogas from grass as transport fuel in Salzburg

harvest → weigh bridge → silage storage

Biogas service station ← anaerobic digester ← macerator

Source: energiewerkstatt, IEA and persona photos
A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take

Anoop Singha,b, Beatrice M. Smytha,b, Jerry D. Murphya,b,*

aDepartment of Civil and Environmental Engineering, University College Cork, Cork, Ireland
bBiofuels Research Group, Environmental Research Institute, University College Cork, Cork, Ireland
Table 9
Digester proposed for Ireland in 2020.

<table>
<thead>
<tr>
<th>Digester type</th>
<th>Number</th>
<th>Feedstock treated</th>
<th>Total feedstock</th>
<th>Capital Investment (M€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>183</td>
<td>50,000 t/a:</td>
<td>9.15 Mt/a:</td>
<td>183 × €7 = €1281</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29,000 t/a grass (530 ha)</td>
<td>5.3 Mt/a grass (97 ha)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21,000 t/a slurry</td>
<td>3.87 Mt/a slurry</td>
<td></td>
</tr>
<tr>
<td>Slaughter</td>
<td>4</td>
<td>52,000 t/a</td>
<td>208,000 t/a</td>
<td>4 × €15 = €60</td>
</tr>
<tr>
<td>Municipal</td>
<td>4</td>
<td>54,500 t/a</td>
<td>218,000 t/a</td>
<td>4 × €20 = €80</td>
</tr>
</tbody>
</table>

* Capital costs from Murphy and Power [41], case study of Linkoping Digester, Murphy and McCarthy [73].

7.5 – 33% substitution of natural gas
Biomethane: RES-T and RES-H

<table>
<thead>
<tr>
<th>Feed stock</th>
<th>Potential 2020 (PJ)</th>
<th>Practical 2020 (PJ)</th>
<th>Factor for RES-T</th>
<th>Contribution to RES-T</th>
<th>% energy in transport 2020 (240 PJ)</th>
<th>% residential gas demand (34 PJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurry</td>
<td>15.53</td>
<td>1.88</td>
<td>X2</td>
<td>3.76</td>
<td>1.57</td>
<td>5.5</td>
</tr>
<tr>
<td>OFMSW</td>
<td>2.26</td>
<td>0.57</td>
<td>X2</td>
<td>1.14</td>
<td>0.48</td>
<td>1.7</td>
</tr>
<tr>
<td>Slaughter</td>
<td>1.37</td>
<td>0.68</td>
<td>X2</td>
<td>1.36</td>
<td>0.57</td>
<td>2.0</td>
</tr>
<tr>
<td>Grass</td>
<td>47.58</td>
<td>11.93</td>
<td>X2</td>
<td>23.86</td>
<td>9.94</td>
<td>35.1</td>
</tr>
<tr>
<td>Total</td>
<td>66.74</td>
<td>15.03</td>
<td></td>
<td>30.06</td>
<td>12.53</td>
<td>44.3</td>
</tr>
</tbody>
</table>
Gas Grid in Ireland
Swedish biomethane use as a transport fuel

Biomethane as vehicle fuel in Sweden
30 June 2007

~ 13 500 gas-powered vehicles
(39 % increase)

~ 109 fuelling stations for CBG/CNG

~ 14 mNm³ biogas (38 % increase)

~ 12.7 mNm³ naturgas (31 % increase)

(1st half year)
GNG Vehicles

- 10 million vehicles worldwide
 - 1.75 million in Argentina
 - 580,000 in Italy
 - 70,000 in Germany

Sweden: biomethane/natural gas mix in vehicle fuel

Delivered volumes of methane gas for vehicles
(Source: Swedish Gas Association)

Year

Sweden: biomethane/natural gas mix in vehicle fuel
Biomethane as a transport fuel

<table>
<thead>
<tr>
<th></th>
<th>OFMSW</th>
<th>Slaughter waste</th>
<th>Grass (Farm)</th>
<th>Grass (Developer)</th>
<th>Co-digest Grass & slurry</th>
<th>Slurry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inject to gas grid</td>
<td>0.14</td>
<td>0.73</td>
<td>0.97</td>
<td>1.1</td>
<td>1.23</td>
<td>1.83</td>
</tr>
<tr>
<td>Compression + service station</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Compressed biomethane</td>
<td>0.25</td>
<td>0.84</td>
<td>1.08</td>
<td>1.21</td>
<td>1.34</td>
<td>1.94</td>
</tr>
<tr>
<td>Inc. VAT @ 21%</td>
<td>0.30</td>
<td>1.02</td>
<td>1.30</td>
<td>1.46</td>
<td>1.62</td>
<td>2.34</td>
</tr>
</tbody>
</table>

Excise duty is not charged on gas used as a propellant, but VAT at 21% has to be added.

Cost €/m3 biomethane = cost per litre diesel equivalent
Biomethane as a transport fuel

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Unit cost</th>
<th>Energy value</th>
<th>Cost per unit energy (€c MJ⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrol</td>
<td>€1.224 L⁻¹</td>
<td>30 MJ L⁻¹</td>
<td>4.08</td>
</tr>
<tr>
<td>Diesel</td>
<td>€1.150 L⁻¹</td>
<td>37.4 MJ L⁻¹</td>
<td>3.07</td>
</tr>
<tr>
<td>Comp biomethane (Grass farmer)</td>
<td>€1.30 m⁻³</td>
<td>37 MJ m⁻³</td>
<td>3.50</td>
</tr>
<tr>
<td>CNG – Austria</td>
<td>€0.89 m⁻³</td>
<td>37 MJ m⁻³</td>
<td>2.41</td>
</tr>
<tr>
<td>CNG – UK</td>
<td>€0.71 m⁻³</td>
<td>37 MJ m⁻³</td>
<td>1.92</td>
</tr>
<tr>
<td>CNG – Germany</td>
<td>€0.70 m⁻³</td>
<td>37 MJ m⁻³</td>
<td>1.89</td>
</tr>
<tr>
<td>Bio-CNG (Grass farmer)</td>
<td>€0.76 m⁻³</td>
<td>37 MJ m⁻³</td>
<td>2.05</td>
</tr>
</tbody>
</table>

BioCNG is 10% biomethane and 90% CNG; blend allows compliance with RES-T of 10%
Bus Rapid Transport powered by Biomethane?

Cork Bus (89 buses): 600 ha of grass biomethane
What type of digester configurations should be employed to produce biomethane from grass silage?

Abdul-Sattar Nizami a,b, Jerry D. Murphy a,b,∗

a Department of Civil and Environmental Engineering, University College Cork, Cork, Ireland
b Environmental Research Institute, University College Cork, Ireland
One-stage and two-stage wet digesters

One-stage dry continuous digesters
One-stage dry batch digester (ala Munich digester)

Two-stage dry batch digesters

Batch with UASB
Difficulties Associated with Monodigestion of Grass as Exemplified by Commissioning a Pilot-Scale Digester

T. Thamsiriroj†,‡ and J. D. Murphy*†,‡
Gas production from grass

Energy content of grass ~ 19 MJ/kg Volatile Solid (VS)

Energy content of CH$_4$ ~ 38 MJ/m3

1 kg VS destroyed = 19MJ = 0.5 m3 CH$_4$

Max production of gas is 500 L CH$_4$/kg VS added
Two stage wet continuous digestion

440 L CH4/kg VS added
88% destruction
@ 40 days retention time
@2 kg VS/m3/d
Role of Leaching and Hydrolysis in a Two-Phase Grass Digestion System

A. S. Nizami,†,*§ T. Thamsiriroj,†,*§ A. Singh,*§ and J. D. Murphy*,*§
70% destruction of volatiles in 30 days when sprinkling 100 L/d over bale silage

Should be equivalent to 350 L CH4/kg VS added in 30 days
Sequencing fed Leach Bed Reactors coupled with Upflow Anaerobic Sludge Blanket, (SLBR-UASB)

310 L CH4/kg VS added
62% destruction @ 42 days retention time

Sprinkle rate dictated by UASB (upflow velocity < 1m/d) at 17 L/d
Improvement proposed: separate leaching and UASB flows
100 L/d for sprinkling; 17 L/d for UASB
Thank you

Funders

- Dept Agriculture Fisheries and Food (with Teagasc Grange and Queens Belfast)
- Environmental Protection Agency
- Bord Gais Eireann
- Irish Research Council for Science Engineering and Technology