The quest for persistent green in outdoor chicken runs – an investigation on fourteen grassland species

L. Breitsameter, N. Wrage, J. Isselstein

University of Göttingen

Introduction

The vegetation cover of outdoor chicken runs is exposed to particularly high levels of stress due to pecking and scratching. Areas of bare soil often arise posing the risk of erosion and nitrogen leaching. We tested the suitability of fourteen native grassland species for a persistent greening of outdoor chicken runs.

Hypotheses

1. Biomass removal by chicken grazing differs among pasture plant species due to different feeding preferences of the animals
2. Stocking duration impacts the post-grazing growth rates of aboveground biomass of pasture plants to an inter-specifically different extent.

Material and Methods

- Experimental design: randomized split-plot, n = 3 (Fig. 1a)
- Rotational grazing of blocks in subsequent order
- Experimental design: randomized split-plot, n = 3
- Data sampling: repeated measurements of standing biomass using a rising plate meter (Castle 1976)⇒
- Calculation of target variables: 1. growth rate during rest periods and 2. relative biomass removal by grazing
- Statistics: two-way ANOVA, Tukey HSD test (95% confidence level) using the software package R (www.r-project.org)

Results

- Relative aboveground biomass removal caused by grazing differed significantly (P < 0.001) among the investigated species (Fig. 1b, Fig. 2).

Hypothesis 1

Fig. 2. Growth rates (bars) and relative aboveground biomass removal (diacmds) after 15 hours of stocking with laying hens. Am – Achillea millefolium; As – Agrostis stolonifera; Dc – Deschampsia caespitosa; Er – Elymus repens; Fa – Festuca arundinacea; Fr – F. rubra; Ft – F. trichophylla; Lp – Lolium perenne; Mi – seed mixture; Pm – Plantago major; Pp – Poa pratensis; Ps – P. supina; Er – Ranunculus repens; To – Taraxacum officinale; Tr – Trifolium repens

- Growth rates of aboveground biomass differed significantly among the investigated species (Fig. 2).
- Duration of stocking was a significant (P < 0.001) explanatory factor for the growth rates during the following rest period.
- Growth rates of aboveground biomass in grazed treatments were significantly higher than in the ungrazed control for A. stolonifera, D. caespitosa, L. perenne (P < 0.01), F. rubra and P. pratensis (P < 0.05). For the other species, growth rates did not differ significantly among treatments.

Hypothesis 2

"So what's the best plant for greening our outside run?"

Conclusions

Among the species tested, Festuca arundinacea and Poa supina potentially are the most eligible for establishing a durable vegetation cover in chicken outside runs due to small (< 20%) relative aboveground biomass removal by chicken and comparatively high growth rates which are not significantly impacted by stocking duration level.

Acknowledgements

We thank the German Federal Agency for Food and Agriculture (BLE) for funding this project (06OE202).

References