Lifespan of white clover (Trifolium repens L.) plant organs under northern temperate climatic conditions

Ievina Sturite¹, Trond Maukon Henriksen² and Tor Arvid Breland³

¹ Norwegian Institute for Agricultural and Environmental Research, Division Arctic Agriculture and Land Use, N-8860 Tjetta, Norway
² Norwegian Institute for Agricultural and Environmental Research, Division Arable Crops, N-2849 Kapp, Norway
³ Norwegian University of Life Sciences, Department of Plant and Environmental Sciences, P.O. Box 5003, N-1432 Ås, Norway

Introduction

In order to understand population dynamics and N cycling in plant communities including white clover, more knowledge about the longevity and turnover of white clover plant organs throughout the year is needed. Our main objective was to determine the longevity of white clover plant organs in harvested and non-harvested stands.

Materials and methods

Growth, death and N dynamics of leaves, stolons and roots of harvested and non-harvested white clover (cv. "Snowy") were studied in a combined plot and root window experiment (Fig. 1) at Apelsvoll Research Centre, S. E. Norway in 2002 and 2003.

The condition of leaves/petioles, stolons and roots were monitored regularly by visual assessment of the colour of individually tagged leaves/petioles, stolon and root sections on a scale from 1 to 4 (Fig. 2A, B and C).

Results

The longevity of leaves and petioles ranged from 21 to 86 d (mean = 59 d, Fig. 3). About 60% of the leaves produced during the growing season turned over before the autumn. Of the remaining leaves, 70-80 % were dead or had disappeared by the subsequent spring. The lifespan of sections of the main stolons ranged from 111 to over 677 d (mean = 411 d, Fig. 3). In particular, stolon sections close to the parent fragment of undisturbed plants were long lived, while sections towards the terminal bud overwintered more poorly and had a much shorter lifespan. The longevity of roots was from 27 to 621 d (mean = 290 d, Fig. 3) and was higher for roots appearing in spring and autumn than in summer. Harvesting significantly reduced the longevity of stolons and caused an increased fragmentation of the white clover plant but did not decrease leaf/petiole or root lifespan.

Conclusions

The leaves were the most dynamic part of white clover plants and substantially more ephemeral than stolons and roots. Stolons and roots were much more winter resistant than leaves, which may constitute a risk of N loss to the environment.