

ÔLE DE RECHERCHE ET D'ENSEIGNEMENT SUPÉRIEUR

Legumes increase brassica yields in low-input systems

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEU ET DE LA RECHERCHE

Fustec J., Cortes-Mora F. A., Piva G., Oury V., Pineau S., Renaud S.

^a UP-SP LEVA, Ecole Supérieure d'Agriculture d'Angers, PRES L'UNAM, Angers, France *g.piva@groupe-esa.fr ; j.fustec@groupe-esa.fr*

école Supérieure D'Agriculture D'Angers

Background and aims

Cereal/legume intercrops often give Land Equivalent Ratios greater than 1 (Corre-Hellou et al., 2007). Such a result may be due to niche separation and/or nutrient transfers between species (Jensen, 1996; Paynel and Cliquet, 2003). Brassica/legume intercrops are still poorly documented.

> ¹⁵N urea (stem feeding)

Our aims were : 1) to compare the development of brassica forages grown either in monoculture, or with a grain legume,

2) to quantify nitrogen transfer from legumes to brassicas.

Material and methods

Plants were sown in rhizotrons. Two intercrops were studied: Brassica napus grown with Vicia faba ssp. minor and B. oleracea with V. sativa. They were compared to monospecific rhizotrons sown with B. napus or B. oleracea. Legumes were ¹⁵N-labelled. Root development was daily recorded. After harvest, above ground parts were prepared for ¹⁵N:¹⁴N measurements.

⇒ Biological N fixation reached 66 to 82% of the legume N.
⇒ About 8% of the total N of intercropped B. oleracea came from vetch, and about 12% of intercropped B. napus total N came from faba bean.
⇒ Dry weights and N contents of brassicas were higher in intercrops than in monospecific rhizotrons (Tab. 1)

rhizotrons (Fig. 1)

Legume and brassica roots

explored different parts of the

Fig. 1 – Distribution of brassica and legume roots in the upper, middle and lower layers of the rhizotrons. A – Vetch sown with cabbage. B – Faba bean sown with rapeseed.

(a,b) indicate significant differences between brassicas and legumes for a given depth at a given date.

Tab. 1 – Dry weights and N contents in brassicas grown either with a legume or in monoculture (mean s.e.)

Conclusion

	Dry matter weight (g.plant-1)		N content (mg. plant-1)	
	Cabbage	Rapeseed	Cabbage	Rapeseed
Monoculture	1.8 b	4.3 b	26.9 b	49.9 b
Vetch	2.4 a		37.7 a	—
Faba bean		6.9 a	—	86.7 a
Ρ	*	**	*	***

*, **, *** indicate statistical differences between depth sections at the same date.

(a,b) indicate significant differences between brassicas and legumes for a given depth at a given date.

23rd European Grassland Federation Symposium Kiel (Germany) August, 29 - September 2, 2010 Yield and N content of Brassica cultivars were significantly higher when they were grown with a legume than in monospecific rhizotrons.
Three weeks of ¹⁵N labelling in the early growth were sufficient to reveal N transfer from grain legumes to brassicas.

References

Corre-Hellou *et al.* 2007. *Plant Soil* 282: 195-208. Jensen ES 1996. *Soil Biol. Biochem.jh* 28: 159-168. Paynel F, Cliquet JB 2003. *Agronomie* 23: 503-510.