Suitability of Perennial Grasses and Legume-Grass-Mixtures for Methane Production
Katrin Schmaler, Kirsten Weiß and Renate Krause
Humboldt-Universität zu Berlin, Faculty of Agriculture and Horticulture
D-10099 Berlin, Germany

Introduction
The crop production for energy purposes in the North-Eastern German Plain is restricted by water supply. In other German regions (precipitation >600 mm per year) Lolium species can result in potential methane yield per hectare similar to maize which is recommended for biogas production. The objective of this paper is to evaluate dry matter yield and methane output of perennial forage crops under water limited conditions.

Furthermore the fermentability of this green forage should be estimated with nitrate content in addition to the dry matter content and WSC/BC ratio (Kaiser et al., 2002, Kaiser and Weiß 2007).

In green forage with nitrate content <4,4 g NO₃ kg⁻¹ DM the risk for producing silages containing butyric acid is extremely high.

Materials and Methods
Field trials
Cutting management
Early first cut: Inflorescences just visible, four or five harvests per year
Late first cut: Early flowering stage, three or four harvests per year
Split block designed trials, four replicates, experimental station in Berge (Federal state Brandenburg, precipitation of 502 mm per year), 2006 - 2008

Table 1. Forage crops and sowing rates

<table>
<thead>
<tr>
<th>Forage crops</th>
<th>Composition</th>
<th>Sowing rate kg ha⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Grass mixture</td>
<td>Festuca pratense/Lolium multiflorum</td>
<td>15/20</td>
</tr>
<tr>
<td>2 Grass mixture</td>
<td>Lolium perenne/L. x bouchereaum/L. multiflorum</td>
<td>15/15/10</td>
</tr>
<tr>
<td>3 Red clover/grass</td>
<td>Trifolium pratense/Lolium perenne/L. x boucheraum/L. multiflorum</td>
<td>10/10/7.5/7.5</td>
</tr>
<tr>
<td>4 Red clover/grass</td>
<td>Trifolium pratense/Lolium multiflorum</td>
<td>12/8/2</td>
</tr>
<tr>
<td>5 Alfalfa/grass</td>
<td>Medicago varia/Festucaallum/Pha leum pratense</td>
<td>10/8/2</td>
</tr>
<tr>
<td>6 Alfalfa/red clover/grass</td>
<td>Medicago varia/Trifolium pratense/Festucaallum/Pha leum pratense</td>
<td>12/2/2</td>
</tr>
</tbody>
</table>

N-Fertilisation
Grass mixtures: Early first cut 240 kg ha⁻¹ yr⁻¹
Late first cut 190 kg ha⁻¹ yr⁻¹
Legume-grass-mixtures: no fertilisation

Evaluation/Calculation
Potential methane yield:
Calculation using dry matter yield and specific methane yield (standard gas volume) per kg organic DM according to Schattauer and Weiland (2006)

Threshold values of ensiling material, low or free in nitrate:
DM₉₀ = 680 – 64 (g NO₃ kg⁻¹ DM) – 71 WSC / BC (Kaiser et al., 2002, Kaiser and Weiß, 2007)

Results

Biogas production
Dry matter yield

Potential methane yield

Figure 1. Annual dry matter yield of forage crops at different stand ages from 2006 to 2008 (values followed by the same letters are not significantly different at p < 0.05
1. - 5. Growth, Early first cut
6. Growth Late first cut

Figure 2. Annual dry matter yield and potential methane yield of forage crops

Alfalfa-grass-mixtures exhibited a significantly higher annual dry matter yield and potential methane yield than the pure grass mixtures if a late first cut was applied. This result was explained by advantages of alfalfa-grass-mixtures in persistence, winter hardiness and drought tolerance compared with Lolium species. An early cutting to improve forage quality resulted in a lower annual dry matter yield of alfalfa-grass-mixtures.

Figure 3. Annual dry matter yield and potential methane yield of forage crops

Figure 4. Content of Nitrate, 1. - 4. Growth, Late first cut

Nitrates concentration in forages was very low regardless of nitrogen fertilization level, forage species and cutting frequency.

Minimum of dry matter content for butyric acid-free silages

Figure 5. Minimum of DM content (Model of Kaiser and Weiß)

Figure 6. Minimum of DM content (Model of Kaiser and Weiß)

As low nitrate levels are common in most perennial grasses and grass-legume-mixtures and wilting alone is not sufficient to prevent clostridial activity and butyric acid production even in forages with high DM level at ensiling (<30 %), the strategic use of silage additives is recommended.

Conclusions
Under water limited conditions alfalfa-grass-mixtures yield higher in dry matter and methane per hectare than pure grass mixtures if a reduced level of cutting frequency is applied. In addition to maize alfalfa-grass-mixtures could be used as a substrate for biogas production.

Most forage crops show particularly low contents of nitrate. For quality assurance of silages wilting to 350 – 400 g DM kg⁻¹ in combination with strategic use of silage additives is recommended.

Acknowledgements
The study was supported by the German Federal Ministry of Food, Agriculture and Consumer Protection and the German Agency of Renewable Resources (FNR-FKZ 22002305).