A comparison of different conversion techniques for the production of energy from permanent grasslands

Felix Richter and Michael Wachendorf

Department of Grassland Science and Renewable Plant Resources, University of Kassel, Germany

Background

- Ensuring the conservation of species-rich permanent grassland
 - \rightarrow utilization of the biomass for **energy production**

Conventional techniques:

- Whole-crop digestion (**WCD**) \rightarrow low digestibility (ligno-cellulose)
- Combustion of hay (CH) \rightarrow emissions, corrosion, ash-melting (elements)

Departement of Grassland Science & **Renewable Plant** Resources

Novel technique:

IFBB (Fig.1): - Press fluid (PF) for **biogas** production (high digestibility) - Press cake (PC) as solid fuel (low element concentration)

Materials and Methods

- > 9 permanent grasslands: 5 montane hay meadows, 4 lowland swards
- > Hydrothermal conditioning: Temperature treatments: 10°C, 60°C
- Mechanical dehydration with a screw press
- \blacktriangleright Chemical composition of press cakes and hay \rightarrow fuel quality
- Anaerobic digestion of press fluids and silage in batch experiments
- \blacktriangleright Energy balance: Output \rightarrow Biogas (electricity & heat), Solid fuel (heat) - Input \rightarrow Diesel, Electricity, Heat

Figure 1: Integrated Generation of Solid Fuel and Biogas from Biomass (IFBB)

rgan C വ g r C tu

Table 1: Comparison of quality parameters between conventional biomass energy sources (hay)
 and silage) and IFBB energy sources (press cake and press fluid) as means of nine different grassland swards.

	Unit†	Fresh	Press cake	Press cake
		biomass/hay	10°C	60°C
Crude ash (XA)	g kg ⁻¹ DM	72.38	53.53	52.39
Potassium (K)	g kg ⁻¹ DM	12.70	2.46	1.11
Magnesium (Mg)	g kg ⁻¹ DM	2.11	1.11	0.86
Chloride (Cl)	g kg ⁻¹ DM	3.33	0.55	0.27
Nitrogen (N)	g kg ⁻¹ DM	14.28	12.21	11.33
Sulfur (S)	g kg ⁻¹ DM	1.53	1.00	0.85
Higher heating value (HHV)	MJ kg ⁻¹ DM	18.82	19.35	19.32
Ash softening temperature (AST)	°C	1158	1203	1224
	Unit†	Silage	Press fluid	Press fluid
			10°C	60°C
Methane yield	$L_N kg^{-1} VS$	244.01	453.06	452.62
Degree of degradation		0.56	0.84	0.87

† VS, volatile solids

CH

Results

- Concentrations of elements significantly (P<0.05) reduced in press cake compared to hay (Tab.1)
- Specific CH₄ yield and degree of degradation of organic matter of press fluids significantly (P<0.05) higher compared to silage (Tab.1)
- 60°C treatment performed better compared to 10°C treatment (Tab.1)
- Highest net energy yield obtained by CH (17.23 MWh ha⁻¹), but only thermal energy
- > Net energy yield of IFBB 60°C treatment: 13.2 MWh ha⁻¹, as thermal and electric energy

Energy balance (MWh ha⁻¹)

Figure 2: Net energy yields as balance of energy input and energy production of combustion of hay (CH), IFBB at two conditioning temperatures (10°C and 60°C) and anaerobic whole-crop digestion (WCD) as means of nine different grassland swards.

Conclusions

- IFBB as management option for the conservation of species-rich grasslands
- IFBB's energy sources (press fluid for biogas) production, press cake for combustion) with higher quality than conventional sources (WCD, CH)

IFBB with lower net energy yield compared to CH

5

S

Dept. of Grassland Science and Renewable Plant Resources, University of Kassel, Steinstr. 19, 37213 Witzenhausen; frichter@uni-kassel.de www.agrar.uni-kassel.de/gnr