Effects of nutrient availability on intrinsic wateruse efficiency of a grassland under rising CO₂ Iris Köhler¹, A. Macdonald², P. Poulton², K. Auerswald¹, H. Schnyder¹ - ¹ Lehrstuhl für Grünlandlehre, TUM, Alte Akademie 12, 85350 Freising, Germany - ² Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom # Introduction Prediction of the effects of climate change on grassland requires an understanding of ecosystem responses to rising atmospheric CO_2 . Our retrospective study of stable carbon isotopes ($\delta^{13}C$) in grassland plants investigates the responses of plant carbon and water relations to the recent history of CO_2 increase. C_3 plants generally increase photosynthesis (A) and decrease stomatal conductance (g_s) under elevated CO_2 [1]. Nitrogen limitation has been shown to constrain the response of A to rising CO_2 [2] and could thus limit the increase of intrinsic water use efficiency (W_i , carbon gain per unit water lost under standard evaporative demand). δ^{13} C studies on tree rings have shown that W_i has increased during the last century in forest ecosystems. Recently we showed that W_i has also increased in nutrient limited grassland ecosystems [3, 4]. We now tested the hypothesis that the response to the recent increase in CO₂ was stronger in more fertile conditions, as A should increase with nutrient supply. Thus, we expected W_i to have increased more strongly on the wellfertilized plots of the studied Park Grass Experiment (or respectively that carbon isotope discrimination ($^{13}\Delta$) has increased less strongly). # **Material & Methods** We analysed δ^{13} C of archived hay and herbage samples taken in late spring and autumn from 5 plots with different fertilizer treatments on the Park Grass Continuous Hay Experiment, where δ^{13} C = [($R_{\text{sample}}/R_{\text{standard}}$) - 1], with R the 13 C/ 12 C ratio in the sample or standard. Carbon isotope discrimination $^{13}\Delta$ is calculated from δ^{13} C and is a proxy of the leaf-level coupling of CO₂ and transpiration fluxes, and a measure of W_i , with $W_i = A/g_s = c_a \cdot (1 - c_i / c_a) / 1.6$ and $c_i / c_a = (^{13}\Delta - a) / (b - a)$, (a=4.4‰, b=27‰). Fig. 1: Aerial view of the Park Grass Experiment and sampled plots, low $N=48~kg~ha^{-1}$ a⁻¹, high $N=96~kg~ha^{-1}~a^{-1}$, $P=35~kg~ha^{-1}~a^{-1}$, $K=225~kg~ha^{-1}~a^{-1}$ # Results Fig. 2: Similar trends in carbon isotope discrimination ($^{13}\Delta$) were observed on all treatments from 1960 to 2009, (equivalent to an atmospheric CO₂ increase of 22% from 317 ppm to 387 ppm). Linear regression showed significant $^{13}\Delta$ increases: 0.1% per 10 ppm CO₂ increase on the control (P<0.05), the PK treatment (P<0.001) and the low N, PK treatment (P<0.05). On the low N treatment, the increase was only significant at the 10% level. On the high N, PK treatment ¹³∆ increased by 0.04‰ per 10 ppm, but this was not significant (P = 0.18, data not shown). Smoothing the data with kernel regression revealed similar patterns for all plots (Fig 2). All 95% confidence intervals of the kernel regression overlapped. Intrinsic W_i was calculated from $^{13}\Delta$. Kernel regression showed increasing W_i on all treatments and a levelling off from about 360 ppm on. W_i of the control was significantly lower than W_i of the PK plots. All PK plots showed very similar trends regardless of N fertilization. Fig. 3: Kernel regression of intrinsic water-use efficiency W_i for the 1960 to 2009 period (equivalent to an atmospheric CO_2 increase from 317 ppm to 387 ppm) showed similar increases of W_i for all treatments, regardless of nutrient application. # Conclusion We found no significant differences between the responses of W_i to rising CO₂ on the differently fertilized treatments. This indicates that the regulation of A and g_s under the recent CO_2 increase did not differ between the treatments. No increase in yields was observed on the studied plots (data not shown). Thus, if an increase in A occurred, it did not transform into an increase in above ground biomass, even on the well fertilized plot. We suggest that the increase in W_i was mainly achieved by a decrease in stomatal conductance. This could lead to decreased transpiration of water and increased surface run-off or drainage from this grassland. # Literature - ¹ Ainsworth, E.A. & Rogers, A. (2007) *Plant Cell Environ* 30, 258-270 - ² Stitt & Krapp (1999) *Plant Cell Environ* 22, 583-621 - ³ Barbosa *et al.* (2010) *Glob Change Biol* 16, 1171-1180 - ⁴ Köhler *et al.* (2010) *Glob Change Biol* 16, 1531-1541 # Acknowledgements We thank the Lawes Agricultural Trust and the UK Biotechnology and Biological Sciences Research Council for access to the archived samples. This project is funded by the DFG (SCHN 557/5-1).